Механизм мышечного сокращения. Электромеханическое сопряжение роль ионов са .

Доброго дня. Если кто не знает Вам советует и консультирует — Стефания Волна. Рассказываю свой опыт и знания в юриспруденции, которого в совокупности больше 15 лет, это дает возможность дать правильные ответы, на то, что может необходимо в различных ситуациях и сейчас рассмотрим — Механизм мышечных сокращений. Если в Вашем конкретном случае потребуется мгновенный ответ в своем городе или же онлайн, то, конечно же, лучше получить помощью на сайте. Или еще проще спросить в комментариях у постоянных читателей, которые ранее сталкивались с таким же вопросом.

Аttention please, данные могут быть неактуальными в момент прочтения, законы очень быстро обновляются и дополняются, поэтому ждем Вашей подписки на нас в соц. сетях, чтобы Вы были в курсе всех обновлений.

В поперечно-полосатые скелетные мышцы входит множество волокон, находящихся в соединительной ткани и крепящихся к сухожилиям. В одних мышцах волокна расположены параллельно длинной оси, а в других они имеют косой вид, прикрепляясь к центральному тяжу сухожильному и к перистому типу.

Виды сокращений

Так ПД распространяется внутрь клетки, и происходит электромеханическое сопряжение. Возбуждение проникает в волокно, переходит в продольную систему, высвобождает кальций. Таким образом осуществляется механизм сокращения мышечного волокна.

Потребление АТФ

Механизм мышечных сокращений подразумевает преобразование химической энергии в механическую работу. Этот процесс можно измерить при эксперименте с лягушкой: ее икроножную мышцу нагружают небольшим весом, а затем раздражают легкими электроимпульсами. Сокращение, при котором мышца становится короче, называется изотоническим. При изометрическом сокращении укорачивания не происходит. Сухожилия не позволяют при развитии мышцей силы укорачиваться. Еще один ауксотонический механизм мышечных сокращений предполагает условия интенсивных нагрузок, когда мышца укорачивается минимальным образом, а сила развивается максимальная.

Сокращение сердечной мышцы начинается через несколько миллисекунд после начала потенциала действия и заканчивается через несколько миллисекунд после завершения потенциала действия. Таким образом, длительность сокращения миокарда зависит от длительности потенциала действия, включая фазу плато, и составляет 0,2 сек в миокарде предсердий и 0,3 сек в миокарде желудочков.

В конце фазы плато потенциала действия вход ионов кальция в кардиомиоцит прекращается. Из саркоплазмы ионы кальция быстро удаляются как обратно в саркоплазматический ретикулум, так и во внеклеточную жидкость Т-трубочек. В результате цикл сокращения в миокарде завершается вплоть до поступления нового потенциала действия.

Рекомендуем прочесть:  Московское Метро Стоимость Проездных Дети 8 Лет

Электромеханическое сопряжение в скелетных мышцах и в миокарде. Классификация и функции рианодиновых рецепторов.

Сила сокращения скелетных мышц практически не зависит от изменений концентрации кальция во внеклеточной жидкости. Сокращение скелетных мышц полностью обеспечивается ионами кальция, поступающими в саркоплазму из цистерн саркоплазматического ретикулума, т.е. из внутриклеточных источников.

Работа мышцы с небольшой нагрузкой сопровождается редкой частотой нервных импульсов и вовлечением небольшого числа ДЕ. В этих условиях, накладывая отводящие электроды на кожу над мышцей и используя усилительную аппаратуру, можно на экране осциллографа или с применением чернильной записи на бумаге зарегистрировать одиночные потенциалы действия отдельных Д Е. В случае же значительных напряжений потенциалы действия многих ДЕ алгебраически суммируются и возникает сложная интегрированная кривая записи электрической активности целой мышцы — электромиограмма (ЭМГ).

Непосредственным источником энергии для мышечного сокращения является расщепление высокоэнергетического вещества АТФ. В мышце происходит также промежуточная реакция, вовлекающая 2-ое высокоэнергетическое вещество – креатинфосфат (КФ). Оно не может действовать как непосредственный источник энергии, поскольку его расщепление не оказывает влияние на сократительные белки мышцы. КФ обеспечивает энергией ресинтез АТФ. В свою очередь, энергия для ресинтеза КФ обеспечивается окислением.

1. Анатомо-физиологические особенности строения мышечного волокна

7. Особенности одиночных и тетанических мышечных сокращений медленных и быстрых мышечных волокон. Связь исходной длины и силы сокращения скелетной мышцы. Зависимость между силой и скоростью сокращения мышц 20

  • Центральная часть миозиновой нити соединяются со связками актинов.
  • Достигнутый контакт актина с миозином способствует конформационному перемещению молекул последнего. Головки вступают в фазу активности и разворачиваются. Таким образом осуществляются молекулярные механизмы мышечного сокращения на фоне перестройки нитей активных элементов по отношению друг к другу.
  • Затем происходит взаимное расхождение миозинов и актинов с последующим восстановлением головной части последних.

Молекулярные механизмы мышечной работы

Среди основных физиологических свойств мышечной работы выделяют сократимость и возбудимость. Эти качества, в свою очередь, обуславливаются проводимостью волокон, пластичностью и свойством автоматии. Что касается проводимости, то она обеспечивает распространение процесса возбудимости между миоцитами по нексусам – это специальные электропроводящие контуры, отвечающие за проведение импульса сокращения мышцы. Однако после сокращения или расслабления тоже совершается работа волокон.

Физиологические свойства работы мышц

В соответствии с молекулярной концепцией о скольжении нитей, работа мышечной группы и, в частности, ее сокращение реализуется в ходе скользящего действия миозинов и актинов. Реализуется сложный механизм взаимодействия этих нитей, в котором можно выделить несколько процессов:

Рианодиновый рецептор (RyR) в мышечных клетках выполняет важнейшую функцию сопряжения потенциала действия с мышечным сокращением. В скелетных мышцах рианодиновые рецепторы активируются посредством специализированного механизма прямого электромеханического сопряжения, а сокращение сердечной мышцы запускается по механизму Са2+-индуцированного выброса Са2+.

Рекомендуем прочесть:  Медицинское Обслуживание Пенсионеров Мвд И Их Семей

CaКM-зависимая протеинкиназа фосфорилирует все три изоформы рецептора, что приводит к его активации. Показано, что PKA и GMP-зависимая протеинкиназа также способны фосфорилировать этот же сайт. Фосфорилирование этого сайта cAMP-зависимой протеинкиназой, в частности при стимуляции b-адренорецептора , активирует сердечную изоформу RyR.
Генерация Са2+-сигнала с участием cADPR, в настоящее время показана для ряда тканей и клеток, для млекопитающих и растений. У млекопитающих активация секреции везикул ацинарными клетками поджелудочной железы и секреции инсулина b-клетками весьма чувствительны к подъему Са2+, вызванному именно этим циклическим нуклеотидом.

Длительность сокращения скелетных и сердечных мышц.

Сила сокращения скелетных мышц практически не зависит от изменений концентрации кальция во внеклеточной жидкости. Сокращение скелетных мышц полностью обеспечивается ионами кальция, поступающими в саркоплазму из цистерн саркоплазматического ретикулума, т.е. из внутриклеточных источников.

В гладкой мышце взаимоотношения между плазматической мембраной и саркоплазматическим ретикулумом не настолько четко организованы, как в скелетной и в сердечной мышце. Однако в гладкой мышце имеются электронно-плотные участки (мостики), размером около 20 нм. В этих участках ко-локализованы дигидропиридиновые рецепторы плазматической мембраны и рианодиновые рецепторы саркоплазматического ретикулума. Были идентифицированы и клонированы три различных типа рианодиновых рецепторов: тип RyR1 обнаружен в скелетных мышцах, тип RyR2 – в мышцах сердца. Считается, что в гладкой мышце присутствует RyR3 изоформа рианодиновых рецепторов . Рецептор к рианодину представляет из себя тетрамерный комплекс, состоящий из мономеров (трансмембранных полипептидов) с молекулярной массой 500 кДа. Рианодиновые рецепторы гладких мышц активируются микромолярной внутриклеточной концентрацией ионов Са 2+ и кофеином. Ингибируются рианодиновые рецепторы ионами Mg 2+ и рутением красным. При взаимодействии с ионами Са 2+ комплекс рианодинового рецептора образует кальций-активируемый Са 2+ канал, через который ионы Са 2+ выходят из саркоплазматического ретикулума в саркоплазму. Проводимость ионного канала рианодинового рецептора для ионов Са 2+ в гладкомышечной клетке сопоставима с проводимостью ионного канала рианодинового рецептора в скелетной и сердечной мышце. Однако, плотность рианодиновых рецепторов в гладкой мышце значительно ниже плотности в других мышечных тканях .

CaКM-зависимая протеинкиназа фосфорилирует все три изоформы рецептора, что приводит к его активации . Показано, что PKA и GMP-зависимая протеинкиназа также способны фосфорилировать этот же сайт. Фосфорилирование этого сайта cAMP-зависимой протеинкиназой, в частности при стимуляции b-адренорецептора, активирует сердечную изоформу RyR.
Генерация Са2+-сигнала с участием cADPR, в настоящее время показана для ряда тканей и клеток, для млекопитающих и растений. У млекопитающих активация секреции везикул ацинарными клетками поджелудочной железы и секреции инсулина b-клетками весьма чувствительны к подъему Са2+, вызванному именно этим циклическим нуклеотидом.

Рекомендуем прочесть:  Положена Ли Военнослужащему Выплата За Проезд Один Раз В Год

Сила сокращения кардиомиоцитов зависит от внеклеточного кальция, а скелетных мышц — нет.

Обычно мышца возбуждается при поступлении нервных импульсов от аксонов мотонейронов в пресинаптическую часть нервного волокна. Через 1-2 мс в мышечном волокне со скоростью примерно 2м/сек булл распространяться потенцией действия, а через 5-10 мс возникает сокращение этого волокна.

Следует отметить, что не во всех мышечных клетках орга­низма процесс сопряжения происходит, как в кардиомиоците. Так, в скелетных мышцах теплокровных потенциал действия короткий (2-3 мс) и медленный поток ионов кальция в них отсутствует.

Электромеханическое сопряжение в мышцах

Для возникновения суммации необходимо, чтобы интервал между раздражениями имел определенную длительность: он должен быть длиннее рефрактерного периода, в противном случае на второе раздражение не будет ответа, и короче всей длительности сократительного ответа, чтобы второе раздражение подействовало на мышцу раньше, чем она успеет расслабиться после первого раздражения. При этом возможны два варианта: если второе раздражение поступает, когда мышца уже начала расслабляться, то на миографической кривой вершина этого сокращения будет отделена от вершины первого западением (рис 8, Ж-Г); если же второе раздражение действует, когда первое еще не дошло до своей вершины, то второе сокращение полностью сливается с первым, образуя единую суммированную вершину (рис 8, А-В).

Феномен электромеханического сопряжения

Потенциал действия деполяризует мышечную мембрану, и большая часть возникающего при этом электричества течет через центр мышечного волокна. Это ведет к выделению из саркоплазматического ретикулума большого количества ионов кальция, которые в нем хранятся.
Для обеспечения молекулярного механизма взаимодействия актиновых и миозиновых нитей необходимы как макроэрги, так и ионы кальция.
По времени он равен длительности одного сердечного цикла (0,8 с) — чем больше частота сердечных сокращений, тем короче это время и наоборот.
При этом стрела прогиба оказалась равной 1,5 мм. Определите модуль Юнга для этой кости. 8. Самостоятельная работа студентов: По учебнику Антонова В.Ф. и др. (§§ 20.4.) изучите временное соотношение между потенциалом действия кардиомицита и одиночным сокращением. 9. Хронокарта учебного занятия: 1. Организационный момент – 5 мин. 2. Разбор темы – 30 мин. 3. Решение ситуационных задач – 60 мин. 4. Текущий контроль знаний – 30 мин 5. Подведение итогов занятия – 10 мин. 10. Перечень учебной литературы к занятию: 1.Ремизов А.Н. Максина А.Г., Потапенко А.Я. Медицинская и биологическая физика. М., «Дрофа», 2022, §§ 8.3, 8.4. 3.Физика и биофизика.(под ред. Антонова В.Ф.).

Оцените статью
Ответы от Дежурного юриста на ЮрГрупп.ру